Web Appendix to “ Bayesian inference in semiparametric mixed models for longitudinal data ”

نویسندگان

  • Yisheng Li
  • Xihong Lin
  • Peter Müller
چکیده

(0,∞) ∫ Rp̃ f(Y | β⋆,D, τ, σ )π(D, τ, σ)dβ⋆dτdDdσ , where P = {D : D is a q×q positive definite matrix}.Without creating confusion we suppress the subscripts for the integration spaces below. Further let Σ = ZCZ + σI, where Z = (Z, Z) and Cq̃×q̃ = diag(D, . . . ,D, τIr−2) with q̃ = mq + r − 2. Note this Z is not the one originally defined in Section 2.2. For convenience, we do not change the notation. Further let p̃ = p+2. To show m(Y) < ∞, integrate out β⋆ analytically. This yields

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

Web-based Supplementary Materials for “Bayesian Semiparametric Nonlin- ear Mixed-Effects Joint Models for Data with Skewness, Missing Responses and Measurement Errors in Covariates” by Y. Huang and G. Dagne Web Appendix A. Multivariate Skew Distributions

Web Appendix A. Multivariate Skew Distributions Different versions of the multivariate skew–normal(SN) and skew-t (ST) distributions have been considered and used in the literature (Arellano-Valle and Genton, 2005; Arellano-Valle et al, 2007; Azzalini and Capitanio, 2003; Sahu et al, 2003 and among others). A new class of distributions by introducing skewness in multivariate elliptically distri...

متن کامل

Bayesian Inference for Generalized Additive Mixed Models Based on Markov Random ®eld Priors

Most regression problems in practice require ¯exible semiparametric forms of the predictor for modelling the dependence of responses on covariates. Moreover, it is often necessary to add random effects accounting for overdispersion caused by unobserved heterogeneity or for correlation in longitudinal or spatial data. We present a uni®ed approach for Bayesian inference via Markov chain Monte Car...

متن کامل

Bayesian inference in semiparametric mixed models for longitudinal data.

We consider Bayesian inference in semiparametric mixed models (SPMMs) for longitudinal data. SPMMs are a class of models that use a nonparametric function to model a time effect, a parametric function to model other covariate effects, and parametric or nonparametric random effects to account for the within-subject correlation. We model the nonparametric function using a Bayesian formulation of ...

متن کامل

Bayesian inference for structured additive quantile regression models

Most quantile regression problems in practice require flexible semiparametric forms of the predictor for modeling the dependence of responses on covariates. Furthermore, it is often necessary to add random effects accounting for overdispersion caused by unobserved heterogeneity or for correlation in longitudinal data. We present a unified approach for Bayesian quantile inference via Markov chai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008